Abstract

Sepsis is an inflammatory disease with exacerbated inflammation at early stages. Inflammatory cytokines play critical roles in the pathophysiology of sepsis. Ubiquitin-specific peptidase 18 (USP18), a deubiquitinating enzyme, has been shown to modulate transforming growth factor-β-activated kinase 1 (TAK1) activity. However, the precise role of USP18 in sepsis is not clear. Here, we investigated the potential effect of USP18 on inflammation in sepsis. We generated mice with USP18 or/and TAK1 deficiency in macrophages (USP18MKO mice, TAK1MKO mice and USP18MKO-TAK1MKO mice) and established a lipopolysaccharide (LPS)-induced sepsis model in mice. Bone marrow-derived macrophages were isolated from wild-type (WT), USP18MKO or TAK1MKO mice and treated with LPS or CpG, and the expression of cytokines including IL-6, IL-10, IL-1β and tumor necrosis factor α (TNF-α) was measured. The activation of NF-κB, ERK and p38 signaling pathways and ubiquitination of TAK1 were detected. We induced sepsis in WT, USP18MKO, TAK1MKO or USP18MKO-TAK1MKO mice and evaluated the survival rate, lung pathology and inflammatory cytokine levels in serum. Macrophages deficient in USP18 produced significantly increased IL-6, IL-1β and TNF-α post-LPS or -CpG stimulation. Macrophages deficient in USP18 had promoted activation of NF-κB, p38 and ERK, and increased ubiquitination of TAK1. Mice with TAK1 deficiency in macrophages had increased survival rates, decreased immune cell infiltration in lung and decreased pro-inflammatory cytokines in serum. In contrast, mice with USP18 deficiency in macrophages had decreased survival rates, increased cell infiltration in lung and increased pro-inflammatory cytokines in serum. USP18 alleviated LPS-induced sepsis by inhibiting TAK1 activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call