Abstract

Dysregulated bone homeostasis contributes to multiple diseases including osteoporosis (OP). In this study, osteoporotic mice were successfully generated using ovariectomy to investigate the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in OP. NR3C1, identified as a significantly upregulated gene in OP using bioinformatic tools, was artificially downregulated in osteoporotic mice. NR3C1 expression was significantly elevated in the femoral tissues of osteoporotic patients, and downregulation of NR3C1 alleviated bone loss and restored bone homeostasis in osteoporotic mice, as manifested by increased ALP- and OCN-positive cells and reduced RANKL/OPG ratio. Downregulation of NR3C1 inhibited osteoclastic differentiation of RAW264.7 cells and mouse bone marrow-derived macrophages (BMDM) and promoted osteogenic differentiation of MC3T3-E1 cells. The transcription factor NR3C1 bound to the cystatin-3 (CST3) promoter to repress its transcription in both RAW264.7 and MC3T3-E1 cells. The downregulation of CST3 reversed the protective effect of NR3C1 downregulation against OP. Ubiquitin-specific-processing protease 10 (USP10)-mediated deubiquitination of NR3C1 improved NR3C1 stability. Downregulation of USP10 inhibited osteoclastic differentiation of RAW264.7 cells and BMDM while promoting osteogenic differentiation of MC3T3-E1 cells. Taken together, USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 transcription, providing an optical therapeutic strategy to alleviate OP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.