Abstract

PurposeIntegrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFβ activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs).MethodsPrimary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry.ResultsUSP10 overexpression increased α5β1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7–2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5β1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN.ConclusionsOur data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.