Abstract

Recognising high-level human activities from low-level sensor data is a crucial driver for pervasive systems that wish to provide seamless and distraction-free support for users engaged in normal activities. Research in this area has grown alongside advances in sensing and communications, and experiments have yielded sensor traces coupled with ground truth annotations about the underlying environmental conditions and user actions. Traditional machine learning has had some success in recognising human activities; but the need for large volumes of annotated data and the danger of overfitting to specific conditions represent challenges in connection with the building of models applicable to a wide range of users, activities, and environments. We present USMART, a novel unsupervised technique that combines data- and knowledge-driven techniques. USMART uses a general ontology model to represent domain knowledge that can be reused across different environments and users, and we augment a range of learning techniques with ontological semantics to facilitate the unsupervised discovery of patterns in how each user performs daily activities. We evaluate our approach against four real-world third-party datasets featuring different user populations and sensor configurations, and we find that USMART achieves up to 97.5% accuracy in recognising daily activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.