Abstract

Arsenic contaminants in drinking water pose a threat to human health. In this study, we report the use of nanotechnology to enhance the efficiency of arsenic removal. In here, zinc oxide (ZnO) has been selected for this application due to its environmentally friendly to human being. One-dimensional ZnO nanorods were grown on porous ceramic substrate by hydrothermal technique. The monolith nano-adsorbents were investigated using field emission scanning electron microscope (FESEM, Hitachi, SE-8030), while phase compositions and specific surface area were examined by x-ray diffractometer (XRD, PAnalitical, X’Pert PRO). Experiments of arsenic adsorption were conducted by using 200 ppb arsenic concentration solution with a continuously stirring system. After the adsorption, each water sample was then measured the arsenic content by inductively coupled plasma-optical emission spectroscope (ICP-OES) as compare to the original water sample to calculate the percentage of arsenic removal. We found that morphology of nano-adsorbent on using the growth solution concentration of 20mM of growth solution concentration and 20 hours of growth time showed the highest density of ZnO hexagonal nanorods with about 100 nm in diameter. The optimization studies obtained 30 minute of adsorption time, pH as 7. This nano-adsorbent exhibited about 98% of arsenic removal. For the comparison with commercial adsorbent (As600), ZnO nano-adsorbent has a better efficiency. The strong competitive ion on the arsenic removal was PO43-. Moreover, the real groundwater after treatment doesn’t have any toxic residue. Therefore, ZnO nanorods coated on porous ceramic can be the candidate material for arsenic removal from groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.