Abstract
Lung cancer is the leading cause of cancer related deaths in the world. The survival rate can be improved if the presence of lung nodules are detected early. This has also led to more focus being given to computer aided detection (CAD) and diagnosis of lung nodules. The arbitrariness of shape, size and texture of lung nodules is a challenge to be faced when developing these detection systems. In the proposed work we use convolutional neural networks to learn the features for nodule detection, replacing the traditional method of handcrafting features like geometric shape or texture. Our network uses the DetectNet architecture based on YOLO (You Only Look Once) to detect the nodules in CT scans of lung. In this architecture, object detection is treated as a regression problem with a single convolutional network simultaneously predicting multiple bounding boxes and class probabilities for those boxes. By performing training using chest CT scans from Lung Image Database Consortium (LIDC), NVIDIA DIGITS and Caffe deep learning framework, we show that nodule detection using this single neural network can result in reasonably low false positive rates with high sensitivity and precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.