Abstract

The public transport system is considered as one of the most important subsystems in metropolises for achieving sustainability objectives by mediating resources and travel demand. Representing the various urban transport networks is crucial in understanding travel behavior and the function of the transport system. However, previous studies have ignored the coupling relationships between multi-mode transport networks and travel flows. To address this problem, we constructed a multilayer network to illustrate two modes of transport (bus and metro) by assigning weights of travel flow and efficiency. We explored the scaling of the public transport system to validate the multilayer network and offered new visions for transportation improvements by considering population. The proposed methodology was demonstrated by using public transport datasets of Shanghai, China. For both the bus network and multilayer network, the scaling of node degree versus Population were explored at 1 km * 1 km urban cells. The results suggested that in the multilayer network, the scaling relations between node degree and population can provide valuable insights into quantifying the integration between the public transport system and urban land use, which will benefit sustainable improvements to cities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.