Abstract

Pressure-induced skin blood flow responses measured via laser Doppler flowmetry are commonly reported in the time domain. The usefulness of spectral analysis in examining blood flow control mechanisms has been demonstrated, but traditional Fourier analysis does not provide sufficient resolution to reveal characteristic low frequencies. Time-frequency (wavelet) analysis was performed on 10 subjects' sacral skin blood flow responses to heating (45 degrees C) with improved resolution. Five frequency bands were identified (0.008-0.02 Hz, 0.02-0.05 Hz, 0.05-0.15 Hz, 0.15-0.4 Hz, and 0.4-2.0 Hz) corresponding to metabolic, neurogenic, myogenic, respiratory, or cardiac origins. Significant differences were observed in the mean normalized power of the metabolic (p < 0.01) and myogenic frequency bands (p < 0.01) between preheating and maximal heating and preheating and postheating periods. Power increased for the metabolic frequency and decreased for the myogenic frequency. Wavelet analysis successfully characterized thermoregulatory control mechanisms by revealing the contributions of the physiological rhythms embedded in the blood flow signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call