Abstract

BackgroundBlood–tissue partition coefficients indicate how a chemical will distribute throughout the body and are an important part of any pharmacokinetic study. They can be used to assess potential toxicological effects from exposure to chemicals and the efficacy of potential novel drugs designed to target certain organs or the central nervous system. In vivo measurement of blood–tissue partition coefficients is often complicated, time-consuming, and relatively expensive, so developing in vitro systems that approximate in vivo ones is desirable. We have determined such systems for tissues such as brain, muscle, liver, lung, kidney, heart, skin, and fat.ResultsSeveral good (p < 0.05) blood–tissue partition coefficient models were developed using a single water–solvent system. These include blood–brain, blood–lung, blood–heart, blood–fat, blood–skin, water–skin, and skin permeation. Many of these partition coefficients have multiple water–solvent systems that can be used as models. Several solvents—methylcyclohexane, 1,9-decadiene, and 2,2,2-trifluoroethanol—were common to multiple models and thus a single measurement can be used to estimate multiple blood–tissue partition coefficients. A few blood–tissue systems require a combination of two water–solvent partition coefficient measurements to model well (p < 0.01), namely: blood–muscle: chloroform and dibutyl ether, blood–liver: N-methyl-2-piperidone and ethanol/water (60:40) volume, and blood–kidney: DMSO and ethanol/water (20:80) volume.ConclusionIn vivo blood–tissue partition coefficients can be easily estimated through water–solvent partition coefficient measurements.Graphical abstract:Predicted blood-brain barrier partition coefficients coloured by measured log BB valueElectronic supplementary materialThe online version of this article (doi:10.1186/s13065-015-0134-z) contains supplementary material, which is available to authorized users.

Highlights

  • Blood–tissue partition coefficients indicate how a chemical will distribute throughout the body and are an important part of any pharmacokinetic study

  • We found that the water–methylcyclohexane system may be a good system to use to approximate log BB values in vitro, especially for solutes whose descriptor values fall within the range covered by both Abraham models

  • We approximate the blood–tissue partition coefficient using the following equation log Pblood/tissue = c0 + c1X1 + Ic where c0 is the intercept, c1 is the coefficient multiplier for the log P system corresponding to solvent X1, and Ic is the carboxylic acid flag

Read more

Summary

Introduction

Blood–tissue partition coefficients indicate how a chemical will distribute throughout the body and are an important part of any pharmacokinetic study. They can be used to assess potential toxicological effects from exposure to chemicals and the efficacy of potential novel drugs designed to target certain organs or the central nervous system. In vivo measurement of blood–tissue partition coefficients is often complicated, time-consuming, and relatively expensive, so developing in vitro systems that approximate in vivo ones is desirable. We have determined such systems for tissues such as brain, muscle, liver, lung, kidney, heart, skin, and fat.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.