Abstract

Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding that fluorescence and Raman IFE can be reliably corrected using the equation I(corr)/I(obsd) = 10(dxAx+dmAm) when the effective excitation and emission path lengths, dx and dm, of a fluorophotometer are determined by simple linear curve-fitting of Raman intensities of a series of water Raman reference samples that have known degrees of Raman IFEs. The path lengths derived with one set of Raman measurements at one specific excitation wavelength are effective for correcting fluorescence and Raman IFEs induced by any chromophore or fluorophore, regardless of the excitation and emission wavelengths. The IFE-corrected fluorescence intensities are linearly correlated to fluorophore concentration over 5 orders of magnitude (from 5.9 nM to 0.59 mM) for 2-aminopurine in a 1 cm × 0.17 cm fluorescence cuvette. This water Raman-based method is easy to implement. It does not involve complicated instrument geometry determination or difficult data manipulation. This work should be of broad significance to physical and biological sciences given the popularity of fluorescence techniques in analytical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call