Abstract

Water injection into aquifers is a new approach for preventing shaft failure by stabilizing water levels. A series of injection tests was performed in the Jining no. 3 coal mine. Injection flow rates decreased over time as the water injection channels were blocked. Groundwater elevations in four observation boreholes and strain variations in the alluvial strata and shaft walls were analyzed to assess the effect of water injection on shaft failure and determine a preventive injection rate. The groundwater elevations in the observation boreholes decreased and the compressive strains in the alluvial strata and shaft wall increased overall over time. Although the water injection effect has weakened in recent years, it has still effectively slowed the increase of compressive strain in the shaft wall compared with conditions before water injection. We determined that the total and average injection rates for the four boreholes need to be approximately 20 m3/h and ≥ 5 m3/h, respectively, to maintain groundwater elevations and stabilize strain in the shafts. Measures such as oscillating pressurized water injection or increasing the number of injection boreholes could be used to increase injection flow rates and prevent shaft failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.