Abstract

AbstractSticky traps baited with sex pheromone are the most common trapping devices used in monitoring of moth pests in food warehouses and food processing. However, these traps only capture males, and it is debatable whether captures of male moths can be used as spatio‐temporal indicators of hot spots of conspecific larvae (only larvae are responsible for damage to food products). Water has been documented as highly attractive to stored product moths, and here we present the first performance data on water bottles as monitoring devices. On average, water bottles caught 15 times more Indianmeal moths [Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae)] than unbaited sticky traps and 74 times more moths than probe traps. We showed that hole size in water bottles had negligible effect on their trapping performance in a naturally infested peanut warehouse. Experimental evaluation of water loss over time showed that smaller holes dramatically reduced water evaporation (less frequent service required), and detergent can be added to the water to reduce moth decomposition without adversely affecting water attractiveness (trap performance). Trap captures of males and females were linearly correlated, and based on quantitative statistical analysis [Spatial Analysis by Distance IndicEs (SADIE)], we showed that weekly captures of the two sexes were spatially correlated. The applied implications of using water bottles in improved IPM of moths in food facilities are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call