Abstract

HIV-1 remains a global health challenge, with over 35 million people infected. The high rates of turnover and evolutionary adaptability exhibited by HIV-1 pose a particular challenge to HIV-1 vaccine development. We developed a dynamic model of HIV-1 infection that uses equilibration, adaptation, and inheritance to model the initial infection and successive generations of viral lineages. The model allows viruses to generate new lineages in proportion to their viral load. These lineages compete for immune cells to infect. We use this model to demonstrate how viruses with a sufficiently high mutation rate could overcome the immune system, even when most changes are expected to be detrimental to viral fitness. We have calibrated our model to match averages of CD4+ T cells/mm3 and HIV-1 RNA/ml derived from 91 HIV-infected individuals studied longitudinally during various disease stages. We also explore the use of phylogenies to validate the underlying composition of viral load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.