Abstract

A large amount of vinegar residue (VR) is generated every year in China, causing serious environmental pollutions. Meanwhile, as a kind of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) ubiquitously exist in environments. With a goal of reusing VR and reducing PAHs pollutions, we herein isolated one B. subtilis strain, ZL09-26, which can degrade phenanthrene and produce biosurfactants. Subsequently, raw VR was dried under different temperatures (50 °C, 80 °C, 100 °C and 120 °C) or pyrolyzed under 350 °C and 700 °C, respectively. After being characterized by various approaches, the treated VR were mixed with ZL09-26 as carriers to degrade phenanthrene. We found that VR dried at 50 °C (VR50) was the best in promoting the growth of ZL09-26 and the degradation of phenanthrene. This result may be attributed to the residual nutrients, suitable porosity and small surface charge of VR50. Our results demonstrate the potential of VR in the biodegradation of phenanthrene, which may be meaningful for developing new VR-based approaches to remove PAHs in aqueous environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call