Abstract
Most advanced manufacturing processes require high‐speed and high‐precision assembly machines for material transfer, packaging, assembly, and electrical wiring. To achieve the precise motion control, most of the machines use rotary electrical motors as their prime motion actuators, and couple their output shafts to mechanical motion translators. In this paper, the author proposes a new direction in high performance automated machine design, and suggests that the future high performance motion systems should be designed through the philosophy of “simplifying the mechanics through direct‐drive actuators and advanced control methodologies”. For this purpose, this paper investigates a class of direct‐drive variable reluctance (VR) motion actuators for high performance motions, and also looks into a number of VR actuators suitable for robotic applications. It also highlights their features and advantages, and describes the challenges of controlling these devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.