Abstract

In this paper, two normal imaginary helical rack cutters were first established. One of these cutters is a skewed-rack cutter with an asymmetrical straight edge. The other is a rack cutter with an asymmetric parabolic profile. Second, the gear’s tooth surface of the asymmetric parabolic rack cutter is modified to be barrel-shaped based on a variable modulus. The tooth thickness of the gear is gradually reduced along the face width of the tooth from the middle of the tooth surface. Then the coordinate relationship between the gears’ blanks and the imaginary helical rack cutters was established. Through the differential geometry, crowned and uncrowned helical gear pairs were generated. Because of human factors, when the gear pair is installed, it is easy to cause the gear pair edge contact. It is necessary to add artificial assembly error settings through the tooth contact analysis to investigate the kinematic errors and contact conditions of the crowned and uncrowned helical gear pair. The mathematical models and analysis methods proposed for the crowned imaginary rack cutter using variable modulus should be useful for the design and production of double crowned helical gears with asymmetric parabolic teeth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.