Abstract
The variable-entered Karnaugh map (VEKM) is shown to be the natural map for representing and manipulating general ‘big’ Boolean functions that are not restricted to the switching or two-valued case. The VEKM is utilized herein in producing a compact general solution of a system of Boolean equations. It serves as a powerful manual tool for function inversion, implementation of the solution procedure, handling don't-care conditions and minimization of the final expressions. The rules of using the VEKM are semi-algebraic and collective in nature, and hence are much easier to state, remember and implement than are the tabular and per-cell rules of classical maps. As a result, the maps used are significantly smaller than those required by classical methods. As an offshoot, the paper contributes some pictorial insight into the representation of ‘big’ Boolean algebras and functions. It also predicts the correct number of particular solutions of a Boolean equation, and produces an exhaustive list of particular solutions. Details of the method are carefully explained and further demonstrated via an illustrative example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.