Abstract
AbstractA new empirical density model is developed for the inner zone between 1 < L < 3 using plasma densities inferred from the upper hybrid resonance on Arase, and hiss‐inferred density values from Van Allen Probes. The Van Allen Probes hiss‐inferred densities are first recalibrated and validated against Arase observations, using both a conjunction event and statistical analyses. The newly developed density model includes dependencies on L, magnetic latitude, and magnetic local time (MLT). Between 1.5 < L < 3.0, the equatorial density variation with L is shown to be equivalent to that of the Ozhogin et al. (2012, https://doi.org/10.1029/2011JA017330) model. However, for L < 1.5, this dependence changes as the plasma density increases at a faster rate with decreasing L. The latitudinal dependence of the plasma density is shown to present a flatter profile than previous models, meaning lower densities extend to higher latitudes. This dependence is well‐modeled by updated fitting coefficients. A clear MLT dependence of the plasma density is identified, which was not found or included in some previous models. This variation is consistent with the diurnal variation of the ionosphere, peaking near MLT = 14 and becoming larger in amplitude with decreasing L. A function describing this MLT dependence is presented. Overall, the new L, latitude, and MLT‐dependent empirical model can provide density values in areas outside the validity region of many previous models, making it a useful resource for accurately determining diffusion coefficients and predicting electron dynamics and their lifetimes in the inner radiation belt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.