Abstract

Abstract: Estimating survival of the offspring of marked female ungulates has proven difficult in free‐ranging populations yet could improve our understanding of factors that limit populations. We evaluated the feasibility and efficiency of capturing large samples (i.e., >80/yr) of neonate mule deer (Odocoileus hemionus) exclusively from free‐ranging, marked adult females using vaginal implant transmitters (VITs, n = 154) and repeated locations of radiocollared females without VITs. We also evaluated the effectiveness of VITs, when used in conjunction with in utero fetal counts, for obtaining direct estimates of fetal survival. During 2003 and 2004, after we placed VIT batteries on a 12‐hour duty cycle to lower electronic failure rates, the proportion that shed ≤ 3 days prepartum or during parturition was 0.623 (SE = 0.0456), and the proportion of VITs shed only during parturition was 0.447 (SE = 0.0468). Our neonate capture success rate was 0.880 (SE = 0.0359) from females with VITs shed ≤ 3 days prepartum or during parturition and 0.307 (SE = 0.0235) from radiocollared females without VITs or whose implant failed to function properly. Using a combination of techniques, we captured 275 neonates and found 21 stillborns during 2002‐2004. We accounted for all fetuses at birth (i.e., live or stillborn) from 78 of the 147 females (0.531, SE = 0.0413) having winter fetal counts, and this rate was heavily dependent on VIT retention success. Deer that shed VITs prepartum were larger than deer that retained VITs to parturition, indicating a need to develop variable‐sized VITs that may be fitted individually to deer in the field. We demonstrated that direct estimates of fetal and neonatal survival may be obtained from previously marked female mule deer in free‐ranging populations, thus expanding opportunities for conducting field experiments. Survival estimates using VITs lacked bias that is typically associated with other neonate capture techniques. However, current vaginal implant failure rates and overall expense limit broad applicability of the technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call