Abstract

AbstractIn chemical and biochemical processes, steady‐state models are widely used for process assessment, control and optimisation. In these models, parameter adjustment requires data collected under nearly steady‐state conditions. Several approaches have been developed for steady‐state identification (SSID) in continuous processes, but no attempt has been made to adapt them to the singularities of batch processes. The main aim of this paper is to propose an automated method based on batch‐wise unfolding of the three‐way batch process data followed by a principal component analysis (Unfold‐PCA) in combination with the methodology of Brown and Rhinehart 2 for SSID. A second goal of this paper is to illustrate how by using Unfold‐PCA, process understanding can be gained from the batch‐to‐batch start‐ups and transitions data analysis. The potential of the proposed methodology is illustrated using historical data from a laboratory‐scale sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal (EBPR). The results demonstrate that the proposed approach can be efficiently used to detect when the batches reach the steady‐state condition, to interpret the overall batch‐to‐batch process evolution and also to isolate the causes of changes between batches using contribution plots. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.