Abstract
In this paper, a novel adaptive network-based fuzzy inference system (ANFIS)-based filter, ABF, is presented for the restoration of images corrupted by impulsive noise (IN). The ABF is performed in two steps. In the first step, impulse detection is realized by using statistical tools. In the second step, a nonlinear filtering scheme based on ANFIS is performed for only the corrupted pixels detected in the first step. To demonstrate the effectivity of ABF at the removal of high-level IN, extensive simulations were realized for ABF and nine different comparison filters. Empirical results indicate that the proposed filter achieves a better performance than the comparison filters in terms of noise suppression and detail preservation, even when the images are highly corrupted by IN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.