Abstract

ABSTRACTA predictable, controllable approach to the synthesis of ternary compounds through known intermediates is presented. Thin and ultrathin film superlattices were made in the Mo-Se, Cu-Se and Mo-Cu systems. Differential scanning calorimetry, low- and high-angle x-ray diffraction were used to assess the interdiffusion and nucleation reactions between elemental layers in these one-dimensional crystals. The experimental parameter modulation distance was used to influence the interfacial reactions. The results from each binary system were then used to predict the reaction pathway in the synthesis of a ternary compound, Cu2Mo6Se8. Superlattices with two different lengthscales were investigated. In the first, only one intermediate, MoSe2 which typically crystallizes at ∼200'C, is observed prior to the crystallization of Cu2Mo6Se8. In the second, no crystalline intermediates are observed below 6000 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.