Abstract
This study proposes a knowledge-based neural fuzzy controller (KNFC) for mobile robot navigation control. An effective knowledge-based cultural multi-strategy differential evolution (KCMDE) is used for adjusting the parameters of KNFC. The KNFC is applied in PIONEER 3-DX mobile robots to achieve automatic navigation and obstacle avoidance capabilities. A novel escape approach is proposed to enable robots to autonomously avoid special environments. The angle between the obstacle and robot is used and two thresholds are set to determine whether the robot entries into the special landmarks and to modify the robot behavior for avoiding dead ends. The experimental results show that the proposed KNFC based on the KCMDE algorithm has improved the learning ability and system performance by 15.59% and 79.01%, respectively, compared with the various differential evolution (DE) methods. Finally, the automatic navigation and obstacle avoidance capabilities of robots in unknown environments were verified for achieving the objective of mobile robot control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.