Abstract

We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was found to be strongly dependent on the average particle size, particle size distribution, and the packing fraction. We also show that the intensity as a function of time-delay can be used to analyze the particle size distribution and packing fraction of an optically thick sample independently of the presence of absorption features. Finally, we propose an all new way to measure the shape of ultra-short pulses that have propagated through a SSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.