Abstract

In a karst system, the characterization of transport properties is based on the comparison of natural tracers observed at the inlet (a swallow hole on the karst plateau) and the outlets of the system (a spring and a well). At Norville, northwest France, electrical conductivity (EC) and turbidity (T) were used as natural tracers for characterizing dissolved elements (surface water geochemistry) and particulate matter transport, respectively. Two methods were used for this study: (1) a comparison of the relations between EC, T and spring discharge (Q) by means of normalized EC–T–Q curves, and (2) a principal component analysis (PCA) including water geochemistry data in addition to EC, T and Q. Three different characteristic flood events have been chosen for the analyses. EC–T–Q curves highlighted the direct transfer, resuspension and deposition of particles during their transport in the karst network. Transport from the swallow hole to both the spring and the well appeared to be dominated by karst-conduit flow. On the other hand, PCA results showed a diffuse source of contamination of groundwaters by nitrate and a point-source contamination of groundwaters by streaming/runoff surface waters with high turbidity and phosphate concentration infiltrated at the swallow hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call