Abstract
Motivated by the increasing availability of high-density single nucleotide polymorphism (SNP) markers across the genome, various haplotype-based methods have been developed for candidate gene association studies, and even for genome-wide association studies. Although haplotype approaches dramatically reduce the multiple comparisons problem (as compared to single SNP analysis), even the number of existing haplotypes is relatively large, which increases the degrees of freedom and decreases the power for the corresponding test statistic. Grouping haplotypes is a way to reduce the degrees of freedom. We propose a procedure that uses a tree-based recursive partitioning algorithm to group haplotypes into a small number of clusters, and conducts the association test based on groups of haplotypes instead of individual haplotypes. The method can be used for both population-based and family-based association studies, with known or ambiguous phase information. Simulation studies suggest that the proposed method has the right type I error rate, and is more powerful than some existing haplotype-based tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.