Abstract

Genome-wide location analysis has become a standard technology to unravel gene regulation networks. The accurate characterization of nucleotide signatures in sequences is key to uncovering the regulatory logic but remains a computational challenge. This protocol describes how to best characterize these signatures (motifs) using the new standalone version of Trawler, which was designed and optimized to analyze chromatin immunoprecipitation (ChIP) data sets. In particular, we describe the three main steps of Trawler_standalone (motif discovery, clustering and visualization) and discuss the appropriate parameters to be used in each step depending on the data set and the biological questions addressed. Compared to five other motif discovery programs, Trawler_standalone is in most cases the fastest algorithm to accurately predict the correct motifs especially for large data sets. Its running time ranges within few seconds to several minutes, depending on the size of the data set and the parameters used. This protocol is best suited for bioinformaticians seeking to use Trawler_standalone in a high-throughput manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.