Abstract
In this paper, we propose to use a convertible deep neural network (DNN) model with a transfer adaptation mechanism to deal with varying input and output numbers of neurons. The flexible DNN model serves as a multi-label classifier for the recommender system as part of the retrieval systems’ push mechanism, which learns the combination of tabular features and proposes the number of discrete offers (targets). Our retrieval system uses the transfer adaptation, mechanism, when the number of features changes, it replaces the input layer of the neural network then freezes all gradients on the following layers, trains only replaced layer, and unfreezes the entire model. The experiments show that using the transfer adaptation technique impacts stable loss decreasing and learning speed during the training process.
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistics, Optimization & Information Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.