Abstract

The sequential probability ratio test (SPRT) from statistics is known to have the least mean decision time compared to other sequential or fixed-time tests for given error rates. In some circumstances, cells need to make decisions accurately and quickly, therefore it has been suggested that the SPRT may be used to understand the speed-accuracy tradeoff in cellular decision-making. It is generally thought that in order for cells to make use of the SPRT, it is necessary to find biochemical circuits that can compute the log-likelihood ratio needed for the SPRT. However, this paper takes a different approach. We recognize that the high-level behavior of the SPRT is defined by its positive detection or hit rate, and the computation of the log-likelihood ratio is just one way to realize this behavior. In this paper, we will present a method in which a transcription-based detector is used to emulate the hit rate of the SPRT without computing the exact log-likelihood ratio. We consider the problem of using a promoter with multiple binding sites to accurately and quickly detect whether the concentration of a transcription factor is above a target level. We show that it is possible to find binding and unbinding rates of the transcription factor to the promoter's binding sites so that the probability that the amount of mRNA produced will be higher than a threshold is approximately equal to the hit rate of the SPRT detector. Moreover, we show that the average time that this transcription-based detector needs to make a positive detection is less than or equal to that of the SPRT for a wide range of concentrations. We remark that the last statement does not contradict Wald's optimality result because our transcription-based detector uses an open-ended test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call