Abstract
The introduction of connected vehicles, connected and automated vehicles, and advanced infrastructure sensors will allow the collection of microscopic metrics that can be used for better estimation and prediction of traffic performance. This study examines the use of disturbance metrics in combination with the macroscopic metrics usually used for the estimation of traffic safety and mobility. The disturbance metrics used are the number of oscillations and a measure of disturbance durations in the time exposed time to collision. The study investigates using the disturbance metrics in data clustering for better off-line categorization of traffic states. In addition, the study uses machine-learning based classifiers for the recognition and prediction of the traffic state and safety in real-time operations. The study also demonstrates that the disturbance metrics investigated are significantly related to crashes. Thus, this study recommends the use of these metrics as part of decision tools that support the activation of transportation management strategies to reduce the probability of traffic breakdown, ease traffic disturbances, and reduce the probability of crashes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.