Abstract

The expansion of the wind energy industry has had benefits in terms of increased renewable energy production but has also led to increased mortality of migratory bats due to interactions with wind turbines. A key question that could guide bat-related management activities is identifying the geographic origin of bats killed at wind-energy facilities. Generating this information requires developing new methods for identifying the geographic sources of individual bats. Here we explore the viability of assigning geographic origin using trace element analyses of fur to infer the summer molting location of eastern red bats (Lasiurus borealis). Our approach is based on the idea that the concentration of trace elements in bat fur is related through the food chain to the amount of trace elements present in the soil, which varies across large geographic scales. Specifically, we used inductively coupled plasma–mass spectrometry to determine the concentration of fourteen trace elements in fur of 126 known-origin eastern red bats to generate a basemap for assignment throughout the range of this species in eastern North America. We then compared this map to publicly available soil trace element concentrations for the U.S. and Canada, used a probabilistic framework to generate likelihood-of-origin maps for each bat, and assessed how well trace element profiles predicted the origins of these individuals. Overall, our results suggest that trace elements allow successful assignment of individual bats 80% of the time while reducing probable locations in half. Our study supports the use of trace elements to identify the geographic origin of eastern red and perhaps other migratory bats, particularly when combined with data from other biomarkers such as genetic and stable isotope data.

Highlights

  • It is estimated that across North America, up to 70 bats per turbine are killed each year (Cryan, 2008), totaling ∼600,000 bat casualties annually (Hayes, 2013)

  • The majority of the bats killed at wind farms in North America are from three migratory species

  • Concentrations of trace elements in the fur of eastern red bats are similar to values previously reported in fur of other bats (Table 1; for detailed summary see Table S2; Hickey et al, 2001; Zocche et al, 2010; Flache et al, 2015a; Flache et al, 2015b); in addition, levels of variation were similar

Read more

Summary

Introduction

It is estimated that across North America, up to 70 bats per turbine are killed each year (Cryan, 2008), totaling ∼600,000 bat casualties annually (Hayes, 2013). Given that the vast majority of bats killed at wind farms are from migratory species, it has been hypothesized that migratory behavior per se may contribute to their susceptibility due to the fact that they encounter multiple wind facilities during seasonal movements (Cryan & Barclay, 2009). In support of this idea, bat mortality in North America at turbines has a strong seasonal component, with most deaths occurring during the late summer-fall migration period (Arnett et al, 2008)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call