Abstract

The traditional weighting schemes used in text categorization for the vector space model (VSM) cannot exploit information intrinsic to texts obtained through online handwriting recognition or any OCR process. Especially, top n (n > 1) recognition candidates could not be used without flooding the resulting text with false occurrences of spurious terms. In this paper, an improved weighting scheme for text categorization, that estimates the occurrences of terms from the posterior probabilities of the top n candidates, is proposed. The experimental results show that the categorization performances increase for texts with high error rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.