Abstract

We have developed and fielded a new x-ray pinhole-imaging snout that exploits time-resolved penumbral imaging of low-emission hot spots in capsule implosion experiments at the National Ignition Facility. We report results for a series of indirectly driven Be capsule implosions that aim at measuring x-ray Thomson scattering (XRTS) spectra at extreme density conditions near stagnation. In these implosions, x-ray emission at stagnation is reduced by 100-1000× compared to standard inertial confinement fusion (ICF) implosions to mitigate undesired continuum background in the XRTS spectra. Our snout design not only enables measurements of peak x-ray emission times, t o , where standard ICF diagnostics would not record any signal, but also allows for inference of hot spot shapes. Measurement of t o is crucial to account for shot-to-shot variations in implosion velocity and therefore to benchmark the achieved plasma conditions between shots and against radiation hydrodynamic simulations. Additionally, we used differential filtering to infer a hot spot temperature of 520 ± 80 eV, which is in good agreement with predictions from radiation hydrodynamic simulations. We find that, despite fluctuations of the x-ray flash intensity of up to 5×, the emission time history is similar from shot to shot and slightly asymmetric with respect to peak x-ray emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.