Abstract

According to classical ecological theory, biodiversity at ecosystem scale can be viewed as the direct product of landscape complexity and information, and the inverse product of energy dissipation. The main difference between natural ecosystems and agroecosystems is the external energy driven by farmers. Hence, it could be argued that biodiversity in biocultural landscapes can be explained by an energy-information-structure model. We developed an Energy-Landscape Integrated Analysis (ELIA) to predict biodiversity levels in human-transformed landscapes. ELIA combines the energy-flow accounting in agricultural landscapes from abioeconomic point of view and landscape ecological metrics that assess the functional structure of the land cover. It uses indicators to assess the energy stored in internal loops (E) and the information incorporated into the energy network (I) to establish a correlation with the resulting patterns and processes in biocultural landscapes (L). We tested the model on biodiversity data using butterflies and birds. The results showed positive correlations between butterfly and bird species richness and ELIA, and, above all, between I and ELIA. This emphasizes how different strategies of agricultural management combined with nature conservation can be employed at certain optimal points in the relationship between the energy-information-structure of biocultural landscapes and the biodiversity present therein. ELIA modelling is the key to a new research agenda that will be very useful for designing more sustainable agroecosystems, metropolitan green infrastructures, and land-use policies, in line with the forthcoming Agroecology Transition planned by the European Commission and the Food and Agriculture Organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.