Abstract
Characterization and quantification of permitted preservatives are important inspections to prevent the overuse of preservatives in authentic formulations. However, the complexity of sample matrices makes preservative determination in cosmetics a tedious process. A rapid analytical strategy to identify preservatives would insure large numbers of products are in compliance with government regulations. Thermal desorption electrospray ionization mass spectrometry (TD-ESI-MS) was used to directly detect preservative compounds in authentic formulations without sample pretreatment. The technique employs a metal probe, which was configured for sampling cosmetics in their original states and was inserted in a closed preheated oven to thermally desorb analytes. The desorbed analytes were then carried by a nitrogen gas stream into an ESI plume, where the formed ions were subsequently detected by the mass analyzer. The TD-ESI mass and tandem mass spectra of different classes of preservative standards were rapidly obtained, and the limits of detection were far below the legal limit of their respective concentrations. The preservatives were also directly detected in different types of authentic formulations in the absence of sample preparation, and within a few seconds per sample. Calibration curves for preservatives in four common formulations yielded good linearity in the regulation-allowed range. Due to its sensitivity, short analysis time, repeatability, and quantitative ability, TD-ESI-MS may serve as a suitable tool for large-scale screening of cosmetic preservatives to assure product safety. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.