Abstract

Azo compounds, which are commonly used as initiators and blowing agents, are also typical self-reactive materials capable of undergoing runaway reaction during storage and transportation, which can cause severe fires and accidents. To ensure the thermal safety of azo compounds in the process, transportation, and applications, this study investigated 2-cyanopropan-2-yliminourea, which can also be called V-30. First, thermal decomposition characteristics under the non-isothermal conditions were obtained using differential scanning calorimetry. Second, the collected data were combined with a mathematical model to evaluate the primary thermal hazard during the process for V-30. Then, based on a heat-transfer model, the self-accelerating decomposition temperature (SADT) was extrapolated for consideration and non-consideration of consumption of chemicals. The results showed that SADT of V-30 was less than 80 °C. Therefore, it is essential to avoid a temperature beyond SADT or the cooling system will fail. The influence of consumption was also considered for SADT in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call