Abstract

The common use of high-resolution tree gauges and downhole permanent pressure/temperature gauges has made it possible to use the measured pressure drop in the wellbore to directly and accurately calculate the gas rate. This is accomplished by first combining an equation of state with a dynamic heat transfer model to create a phase-thermal model (PTM). The PTM is then integrated with a direct solution to the mechanical energy balance (MEB) for flow in pipes. The results obtained using this technique can be as accurate as, or in some cases more accurate than, conventional rate measurements. Since the wellbore may also be used for fluid density validation, the effective gas gravity (an input for many conventional flow rate calculations) may also be determined during shut-ins and used as an input to improve the accuracy of meter provers. The purpose of this paper is to explain the physics behind the gas rate calculation and to present case study results from the implementation of this method in both real-time and historic data processing. The paper will also discuss the limitations of this method and the range of potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call