Abstract

Abstract The ability of high-resolution mesoscale models to simulate near-surface and subsurface meteorological processes is critical for representing land–atmosphere feedback processes. The High-Resolution Rapid Refresh (HRRR) model is a 3-km numerical weather prediction model that has been used operationally since 2014. In this study, we evaluated the HRRR over the contiguous United States from 1 January 2021 to 31 December 2021. We compared the 1-, 3-, 6-, 12-, 18-, 24-, 30-, and 48-h forecasts against observations of air and surface temperature, shortwave radiation, and soil temperature and moisture from the 114 stations of the U.S. Climate Reference Network (USCRN) and evaluated the HRRR’s performance for different geographic regions and land cover types. We found that the HRRR well simulated air and surface temperatures, but underestimated soil temperatures when temperatures were subfreezing. The HRRR had the largest overestimates in shortwave radiation under cloudy skies, and there was a positive relationship between the shortwave radiation mean bias error (MBE) and air temperature MBE that was stronger in summer than winter. Additionally, the HRRR underestimated soil moisture when the values exceeded about 0.2 m3 m−3, but overestimated soil moisture when measurements were below this value. Consequently, the HRRR exhibited a positive soil moisture MBE over the drier areas of the western United States and a negative MBE over the eastern United States. Although caution is needed when applying conclusions regarding HRRR’s biases to locations with subgrid-scale land cover variations, general knowledge of HRRR’s biases will help guide improvements to land surface models used in high-resolution weather forecasting models. Significance Statement Weather forecasters rely upon output from many different models. However, the models’ ability to represent processes happening near the land surface over short time scales is critical for producing accurate weather forecasts. In this study, we evaluated the High-Resolution Rapid Refresh (HRRR) model using observations from the U.S. Climate Reference Network, which currently includes 114 reference climate observing stations in the contiguous United States. These stations provide highly accurate measurements of air temperature, precipitation, soil temperature, and soil moisture. Our findings helped illustrate conditions when the HRRR performs well, but also conditions in which the HRRR can be improved, which we expect will motivate ongoing improvements to the HRRR and other weather forecasting models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.