Abstract

In this work, we investigate the compositions and origin of metasomatic fluids responsible for the formation of sulfide replacement textures in Mg-Suite lithologies of lunar samples 67915-149 and 67915-150. We have constructed a quantitative thermodynamic model of the composition of the metasomatic fluid using fO2, fS2, and temperature constraints derived from a thermodynamic analysis of the metasomatic fluid-mineral reactions and the measured compositions of the phases in the sulfide assemblages. Results from this modeling indicate that the metasomatic fluid responsible for the formation of the sulfide replacement textures was likely dominated by a combination of H2 and CH4, with minor abundances of H2O, CO, and H2S. The modeling indicates that H2S was, by orders of magnitude, the dominant S-species present in the metasomatic fluid and S isotopes in the replacement sulfides suggest that the fluid experienced significant removal of H2S by sulfide precipitation. The calculated H2 and H2O contents of the metasomatic fluid are consistent with those that might be expected for the late stage degassing of shallowly emplaced, intrusive magma bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call