Abstract
We develop a formalism for describing quantum dissipative systems in statistical mechanics based on the quantum Renyi entropy. We derive the quantum Renyi distribution from the principle of maximum quantum Renyi entropy and differentiate this distribution (the temperature density matrix) with respect to the inverse temperature to obtain the Bloch equation. We then use the Feynman path integral with a modified Mensky functional to obtain a Lindblad-type equation. From this equation using projection operators, we derive the integro-differential equation for the reduced temperature statistical operator, an analogue of the Zwanzig equation in statistical mechanics, and find its formal solution in the form of a series in the class of summable functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.