Abstract
This paper presents a demonstration of the visualization and the characterization of gas–liquid mass transfer in a small bubbly column. The aim is to show how simple experiments can be used to directly quantify mass transfer without the need of sophisticated probes or complex titrations. The method here proposed is based on the “red bottle” reaction, i.e., the reversible oxidation by oxygen of dihydroresorufin to red resorufin. This reaction produces a distinctive red color, and in the specific condition identified, the time required to turn from colorless to red solution can be directly correlated with the inverse of the volumetric mass transfer coefficient kLa (s–1). Therefore, this reaction can be used to estimate the mass flux of oxygen transferred from the gas phase (bubbles) to the liquid phase and to study how this flux is affected by geometrical and operating parameters of bubbly flows. The lab work described is thus very convenient for education purposes. This is the first visual demonstration allowing mass transfer to be quantified with good precision, opening up a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.