Abstract

Here, we present a detailed protocol for the study of the orientation behavior of larvae of the fruit fly Drosophila melanogaster in response to both real and virtual odors (chemotaxis). An element common to the study of navigation directed by all sensory modalities is the need to correlate changes in behavioral states (e.g., crawling and turning) with temporal changes in the stimulus preceding these events. It has been shown recently that virtual odor landscapes, with any arbitrary geometry, can be created by combining a platform known as "Raspberry Pi virtual reality" (PiVR) with optogenetics. This methodology offers a technical foundation with which to characterize how the larval nervous system responds to stimulation by real and virtual odors. Furthermore, the experimental steps presented and discussed herein highlight important considerations that are needed to ensure experimental reproducibility. Finally, we believe that this framework can be easily adapted and generalized to allow investigators to study other sensory modalities in the Drosophila larva and in other animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.