Abstract

Circulating tumor cells (CTCs) are promising biomarkers for clinical application. Cancer screening with Low-Dose Computed Tomography (LDCT) and CTC detections in pulmonary nodule patients has never been reported. The aim of this study was to explore the effectiveness of the combined methods to screen lung cancer. Out of 8313 volunteers screened by LDCT, 32 ground-glass nodules (GGNs) patients and 19 healthy volunteers were randomly selected. Meanwhile, 15 lung cancer patients also enrolled. CellCollector, a new CTC capturing device, was applied for CTCs detection. In GGNs group, five CTC positive patients with six CTCs were identified, 15.6% were positive (range, 1–2). In lung cancer group, 73.3% of the analyzed CellCollector cells were positive (range, 1–7) and no “CTC-like” events were detected in healthy group. All CTCs detected from GGNs group were isolated from the CellCollector functional domain and determined by whole genomic amplification for next-generation sequencing(NGS) analysis. NGS data showed that three cancer-related genes contained mutations in five CTC positive patients, including KIT, SMARCB1 and TP53 genes. In four patients, 16 mutation genes existed. Therefore, LDCT combined with CTC analysis by an in vivo device in high-risk pulmonary nodule patients was a promising way to screen early stage lung cancer.

Highlights

  • Screening with Low-Dose Computed Tomography (LDCT) is one tool that may increase the early detection and reduce the mortality in lung cancer[8]

  • We provide a potential method for early lung cancer screening with LDCT and Circulating tumor cells (CTCs) detection

  • We first addressed the clinical needs of sensitivity screening techniques for identification of early lung cancer with LDCT analysis and how to detect CTCs with the CellCollector, a new in vivo method to isolate CTCs

Read more

Summary

Introduction

Screening with Low-Dose Computed Tomography (LDCT) is one tool that may increase the early detection and reduce the mortality in lung cancer[8]. To overcome the limitations of small blood sample volumes of the ex vivo CTCs isolation techniques, the CellCollector, which is the first in vivo CTC isolation product worldwide, was invented by GILUPI29. It is a structured and functionalized medical wire, which offers the opportunity of capturing CTCs from the circulating blood of patients under the largest blood flow volume. We applied the new CellCollector technique to detect CTCs in a high risk population to explore the potential application in early stage screening and diagnosis of lung cancer patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call