Abstract
We present a new method to detect and quantify mass segregation in star clusters. It compares the minimum spanning tree (MST) of massive stars with that of random stars. If mass segregation is present, the MST length of the most massive stars will be shorter than that of random stars. This difference can be quantified (with an associated significance) to measure the degree of mass segregation. We test the method on simulated clusters in both 2D and 3D and show that the method works as expected. We apply the method to the Orion Nebula Cluster (ONC) and show that the method is able to detect the mass segregation in the Trapezium with a ‘mass segregation ratio (MSR)’ΛMSR= 8.0 ± 3.5 (where ΛMSR= 1 is no mass segregation) down to 16 M⊙, and also that the ONC is mass segregated at a lower level (∼2.0 ± 0.5) down to 5 M⊙. Below 5 M⊙ we find no evidence for any further mass segregation in the ONC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.