Abstract

Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high-resolution images. While reducing the resolution of the images will reduce the computational expense, it is not known a priori how this will affect the quality of the resulting eigendecomposition. The work presented here provides an analysis of how different resolution reduction techniques affect the eigendecomposition. A computationally efficient algorithm for calculating the eigendecomposition based on this analysis is proposed. Examples show that this algorithm performs well on arbitrary video sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.