Abstract
Shared frailty models, that is, hazard regression models for censored data including random effects acting multiplicatively on the hazard, are commonly used to analyze time-to-event data possessing a hierarchical structure. When the random effects are assumed to be normally distributed, the cluster-specific marginal likelihood has no closed-form expression. A powerful method for approximating such integrals is the adaptive Gauss-Hermite quadrature (AGHQ). However, this method requires the estimation of the mode of the integrand in the expression defining the cluster-specific marginal likelihood: it is generally obtained through a nested optimization at the cluster level for each evaluation of the likelihood function. In this work, we show that in the case of a parametric shared frailty model including a normal random intercept, the cluster-specific modes can be determined analytically by using the principal branch of the Lambert function, . Besides removing the need for the nested optimization procedure, it provides closed-form formulas for the gradient and Hessian of the approximated likelihood making its maximization by Newton-type algorithms convenient and efficient. The Lambert-based AGHQ (LAGHQ) might be applied to other problems involving similar integrals, such as the normally distributed random intercept Poisson model and the computation of probabilities from a Poisson lognormal distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.