Abstract
Recently, sinh transformations have been proposed to evaluate nearly weakly singular integrals which arise in the boundary element method. These transformations have been applied to the evaluation of nearly weakly singular integrals arising in the solution of Laplace's equation in both two and three dimensions and have been shown to evaluate the integrals more accurately than existing techniques. More recently, the sinh transformation was extended in an iterative fashion and shown to evaluate one dimensional nearly strongly singular integrals with a high degree of accuracy. Here the iterated sinh technique is extended to evaluate the two dimensional nearly singular integrals which arise as derivatives of the three dimensional boundary element kernel. The test integrals are evaluated for various basis functions and over flat elements as well as over curved elements forming part of a sphere. It is found that two iterations of the sinh transformation can give relative errors which are one or two orders of magnitude smaller than existing methods when evaluating two dimensional nearly strongly singular integrals, especially with the source point very close to the element of integration. For two dimensional nearly weakly singular integrals it is found that one iteration of the sinh transformation is sufficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.