Abstract

Engineered nanoparticles (NPs) are being studied for their potential to harm humans and the environment. Biological activity, toxicity, physicochemical properties, fate, and transport of NPs must all be evaluated and/or predicted. In this work, we explored the influence of metal oxide nanoparticle facets on their toxicity towards bronchial epithelial (BEAS-2B), Murine myeloid (RAW 264.7), and E. coli cell lines. To estimate the toxicity of metal oxide nanoparticles grown to a low facet index, a quantitative structure–activity relationship ((Q)SAR) approach was used. The novel model employs theoretical (density functional theory calculations) and experimental studies (transmission electron microscopy images from which several particle descriptors are extracted and toxicity data extracted from the literature) to investigate the properties of faceted metal oxides, which are then utilized to construct a toxicity model. The classification mode of the k-nearest neighbour algorithm (EnaloskNN, Enalos Chem/Nanoinformatics) was used to create the presented model for metal oxide cytotoxicity. Four descriptors were identified as significant: core size, chemical potential, enthalpy of formation, and electronegativity count of metal oxides. The relationship between these descriptors and metal oxide facets is discussed to provide insights into the relative toxicities of the nanoparticle. The model and the underpinning dataset are freely available on the NanoSolveIT project cloud platform and the NanoPharos database, respectively.

Highlights

  • Metal oxide nanomaterials (NMs) have demonstrated exceptional structural, electronic, and chromic properties, and as such they find applications in various fields of technology

  • The goal of this study was to provide a method for generating metal oxide nano-descriptors that are related to exposed facets, which may be used to characterize the observed activity of NPs towards biological cell lines

  • The goal of this study was to show that cytotoxicity of NPs may be predicted using a combination of physicochemical, molecular, and periodic table-based descriptors derived for low index facets of metal oxide NMs

Read more

Summary

Introduction

Metal oxide nanomaterials (NMs) have demonstrated exceptional structural, electronic, and chromic properties, and as such they find applications in various fields of technology. The vast application of metal oxides in various nanotechnology-related fields has drawn concerns with regard to their safety and toxicity, as some of these nanoparticles (NPs) have been reported to be toxic to some organisms [4, 5]. In this regard, there is a high possibility that the sunscreens, which are intended to protect individuals from UV radiation, may cause more harm than the UV radiation itself [6]. Several experimental studies have been conducted to assess the toxicity of metal oxides, examining various parameters that can cause toxicity [4, 8, 9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.