Abstract
AbstractThis paper adopts the Caputo fractional derivative to re-specify the hybrid Phillips curve as a dynamic process of inflation with memory. The Caputo fractional derivative contains a non-integer differencing order, providing the same insight for persistence as emphasized in the Autoregressive Fractionally Integrated Moving Average (ARFIMA) time series models. We utilize the hybrid Phillips curve with memory to forecast US inflation during 1967–2014. The results indicate that our model performs well against a traditional hybrid Phillips curve, an integrated moving average model and a naive random walk model in quasi-in-sample forecasts. In out-of-sample forecasts based on Consumer Price Index (CPI) and Personal Consumption Expenditure (PCE) data, we find that the forecasting performance of Phillips curve models depends on the sample period. Our model with CPI data can outperform others in out-of-sample forecasts during and after the most recent financial crisis (2006–2014).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.