Abstract
Differential interference contrast (DIC) is frequently used in conventional 2D biological microscopy. Our recent investigations into producing a 3D DIC microscope (in both conventional and confocal modes) have uncovered a fundamental difficulty: namely that the phase gradient images of DIC microscopy cannot be visualized using standard digital image processing and reconstruction techniques, as commonly used elsewhere in microscopy. We discuss two approaches to the problem of preparing gradient images for 3D visualization: integration and the Hilbert transform. After applying the Hilbert transform, the dataset can then be visualized in 3D using standard techniques. We find that the Hilbert transform provides a rapid qualitative pre-processing technique for 3D visualization for a wide range of biological specimens in DIC microscopy, including chromosomes, which we use in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.